Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Res ; 11(1): 6, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36599828

RESUMO

Skeletal tissue is highly innervated. Although different types of nerves have been recently identified in the bone, the crosstalk between bone and nerves remains unclear. In this review, we outline the role of the peripheral nervous system (PNS) in bone regeneration following injury. We first introduce the conserved role of nerves in tissue regeneration in species ranging from amphibians to mammals. We then present the distribution of the PNS in the skeletal system under physiological conditions, fractures, or regeneration. Furthermore, we summarize the ways in which the PNS communicates with bone-lineage cells, the vasculature, and immune cells in the bone microenvironment. Based on this comprehensive and timely review, we conclude that the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves. An in-depth understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on bone-nerve crosstalk in promoting bone repair and regeneration.

2.
ACS Appl Mater Interfaces ; 14(30): 34427-34442, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35866896

RESUMO

Fracture nonunion can result in considerable physical harm and limitation of quality of life in patients, exerting an extensive economic burden to the society. Nonunion largely results from unresolved inflammation and impaired osteogenesis. Despite advancements in surgical techniques, the indispensable treatment for nonunion is robust anti-inflammation therapy and the promotion of osteogenic differentiation. Herein, we report that plasma exosomes derived from infected fracture nonunion patients (Non-Exos) delayed fracture repair in mice by inhibiting the osteogenic differentiation of bone marrow stromal cells in vivo and in vitro. Unique molecular identifier microRNA-sequencing (UID miRNA-seq) suggested that microRNA-708-5p (miR-708-5p) was overexpressed in Non-Exos. Mechanistically, miR-708-5p targeted structure-specific recognition protein 1, thereby suppressing the Wnt/ß-catenin signaling pathway, which, in turn, impaired osteogenic differentiation. AntagomicroRNA-708-5p (antagomiR-708-5p) could partly reverse the above process. A bacteria-sensitive natural polymer hyaluronic-acid-based hydrogel (HA hydrogel) loaded with antagomiR-708-5p exhibited promising effects in an in vivo study through antibacterial and pro-osteogenic differentiation functions in infected fractures. Overall, the effectiveness and reliability of an injectable bacteria-sensitive hydrogel with sustained release of agents represent a promising approach for infected fractures.


Assuntos
Fraturas Ósseas , MicroRNAs , Animais , Antagomirs , Bactérias/metabolismo , Diferenciação Celular/genética , Preparações de Ação Retardada/farmacologia , Fraturas Ósseas/tratamento farmacológico , Humanos , Hidrogéis/farmacologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Qualidade de Vida , Reprodutibilidade dos Testes
3.
Exp Mol Med ; 54(7): 961-972, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831436

RESUMO

MicroRNAs (miRNAs) broadly regulate normal biological functions of bone and the progression of fracture healing and osteoporosis. Recently, it has been reported that miR-1224-5p in fracture plasma is a potential therapy for osteogenesis. To investigate the roles of miR-1224-5p and the Rap1 signaling pathway in fracture healing and osteoporosis development and progression, we used BMMs, BMSCs, and skull osteoblast precursor cells for in vitro osteogenesis and osteoclastogenesis studies. Osteoblastogenesis and osteoclastogenesis were detected by ALP, ARS, and TRAP staining and bone slice resorption pit assays. The miR-1224-5p target gene was assessed by siRNA-mediated target gene knockdown and luciferase reporter assays. To explore the Rap1 pathway, we performed high-throughput sequencing, western blotting, RT-PCR, chromatin immunoprecipitation assays and immunohistochemical staining. In vivo, bone healing was judged by the cortical femoral defect, cranial bone defect and femoral fracture models. Progression of osteoporosis was evaluated by an ovariectomy model and an aged osteoporosis model. We discovered that the expression of miR-1224-5p was positively correlated with fracture healing progression. Moreover, in vitro, overexpression of miR-1224-5p slowed Rankl-induced osteoclast differentiation and promoted osteoblast differentiation via the Rap1-signaling pathway by targeting ADCY2. In addition, in vivo overexpression of miR-1224-5p significantly promoted fracture healing and ameliorated the progression of osteoporosis caused by estrogen deficiency or aging. Furthermore, knockdown of miRNA-1224-5p inhibited bone regeneration in mice and accelerated the progression of osteoporosis in elderly mice. Taken together, these results identify miR-1224-5p as a key bone osteogenic regulator, which may be a potential therapeutic target for osteoporosis and fracture nonunion.


Assuntos
Reabsorção Óssea , MicroRNAs , Osteoporose , Adenilil Ciclases , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Feminino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Osteoporose/genética , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP
4.
Front Endocrinol (Lausanne) ; 13: 915139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733785

RESUMO

Cell senescence is a crucial process in cell fate determination and is involved in an extensive array of aging-associated diseases. General perceptions and experimental evidence point out that the decline of physical function as well as aging-associated diseases are often initiated by cell senescence and organ ageing. Therefore, regulation of cell senescence process can be a promising way to handle aging-associated diseases such as osteoporosis. The circadian clock regulates a wide range of cellular and physiological activities, and many age-linked degenerative disorders are associated with the dysregulation of clock genes. BMAL1 is a core circadian transcription factor and governs downstream genes by binding to the E-box elements in their promoters. Compelling evidence has proposed the role of BMAL1 in cellular senescence and aging-associated diseases. In this review, we summarize the linkage between BMAL1 and factors of cell senescence including oxidative stress, metabolism, and the genotoxic stress response. Dysregulated and dampened BMAL1 may serve as a potential therapeutic target against aging- associated diseases.


Assuntos
Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Senescência Celular/genética , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica
5.
Biomater Transl ; 3(3): 188-200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36654776

RESUMO

Diabetic wounds are a common complication in diabetes patients. Due to peripheral nerve damage and vascular dysfunction, diabetic wounds are prone to progress to local ulcers, wound gangrene and even to require amputation, bringing huge psychological and economic burdens to patients. However, the current treatment methods for diabetic wounds mainly include wound accessories, negative pressure drainage, skin grafting and surgery; there is still no ideal treatment to promote diabetic wound healing at present. Appropriate animal models can simulate the physiological mechanism of diabetic wounds, providing a basis for translational research in treating diabetic wound healing. Although there are no animal models that can fully mimic the pathophysiological mechanisms of diabetic wounds in humans, it is vital to explore animal simulation models used in basic research and preclinical studies of diabetic wounds. In addition, hydrogel materials are regarded as a promising treatment for diabetic wounds because of their good antimicrobial activity, biocompatibility, biodegradation and appropriate mechanical properties. Herein, we review and discuss the different animal models used to investigate the pathological mechanisms of diabetic wounds. We further discuss the promising future application of hydrogel biomaterials in diabetic wound healing.

6.
Oxid Med Cell Longev ; 2021: 2310025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733401

RESUMO

Oxidative stress is relevant in compression-induced nucleus pulposus (NP) cell apoptosis and intervertebral disc (IVD) degeneration. Exosomes derived from bone mesenchymal stem cells (BMSCs-Exos) are key secretory products of MSCs, with important roles in tissue regeneration. This research is aimed at studying the protective impact of BMSCs-Exos on NP cell apoptosis caused by compression and investigating the underlying mechanisms. Our results indicated that we isolated BMSCs successfully. Exosomes were isolated from the BMSCs and found to alleviate the inhibitory effect that compression has on proliferation and viability in NP cells, decreasing the toxic effects of compression-induced NP cells. AnnexinV/PI double staining and TUNEL assays indicated that the BMSCs-Exos reduced compression-induced apoptosis. In addition, our research found that BMSCs-Exos suppressed compression-mediated NP oxidative stress by detecting the ROS and malondialdehyde level. Furthermore, BMSCs-Exos increased the mitochondrial membrane potential and alleviated compression-induced mitochondrial damage. These results indicate that BMSCs-Exos alleviate compression-mediated NP apoptosis by suppressing oxidative stress, which may provide a promising cell-free therapy for treating IVD degeneration.


Assuntos
Apoptose , Exossomos/fisiologia , Degeneração do Disco Intervertebral/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Núcleo Pulposo/citologia , Estresse Oxidativo , Animais , Núcleo Pulposo/patologia , Ratos , Ratos Sprague-Dawley
7.
J Nanobiotechnology ; 19(1): 150, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020670

RESUMO

BACKGROUND: Enhanced angiogenesis can promote diabetic wound healing. Mesenchymal stem cells (MSCs)-derived exosomes, which are cell-free therapeutics, are promising candidates for the treatment of diabetic wound healing. The present study aimed to investigate the effect of exosomes derived from MSCs pretreated with pioglitazone (PGZ-Exos) on diabetic wound healing. RESULTS: We isolated PGZ-Exos from the supernatants of pioglitazone-treated BMSCs and found that PGZ-Exos significantly promote the cell viability and proliferation of Human Umbilical Vein Vascular Endothelial Cells (HUVECs) injured by high glucose (HG). PGZ-Exos enhanced the biological functions of HUVECs, including migration, tube formation, wound repair and VEGF expression in vitro. In addition, PGZ-Exos promoted the protein expression of p-AKT, p-PI3K and p-eNOS and suppressed that of PTEN. LY294002 inhibited the biological function of HUVECs through inhibition of the PI3K/AKT/eNOS pathway. In vivo modeling in diabetic rat wounds showed that pioglitazone pretreatment enhanced the therapeutic efficacy of MSCs-derived exosomes and accelerated diabetic wound healing via enhanced angiogenesis. In addition, PGZ-Exos promoted collagen deposition, ECM remodeling and VEGF and CD31 expression, indicating adequate angiogenesis in diabetic wound healing. CONCLUSIONS: PGZ-Exos accelerated diabetic wound healing by promoting the angiogenic function of HUVECs through activation of the PI3K/AKT/eNOS pathway. This offers a promising novel cell-free therapy for treating diabetic wound healing.


Assuntos
Diabetes Mellitus/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pioglitazona/metabolismo , Pioglitazona/farmacologia , Cicatrização/efeitos dos fármacos , Indutores da Angiogênese/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Diabetes Mellitus Experimental , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...